Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets

dc.contributor.authorCastelo-Fernandez, Cesar
dc.contributor.authorRezende, Pedro J. de
dc.contributor.authorFalcao, Alexandre X.
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorBloch, I
dc.contributor.authorCesar, R. M.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:00:04Z
dc.date.available2020-12-10T19:00:04Z
dc.date.issued2010-01-01
dc.description.abstractIn this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OFF while still gaining in classification time, at the expense of a slight increase in training time.en
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Dept Comp, UNESP, Bauru, Brazil
dc.description.affiliationUnespUniv Sao Paulo, Dept Comp, UNESP, Bauru, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFAEPEX/Unicamp
dc.description.sponsorshipIdCAPES: 01-P-04388/2010
dc.description.sponsorshipIdCNPq: 472504/2007-0
dc.description.sponsorshipIdCNPq: 483177/2009-1
dc.description.sponsorshipIdFAPESP: 07/52015-0
dc.description.sponsorshipIdCNPq: 481556/2009-5
dc.description.sponsorshipIdCNPq: 302617/2007-8
dc.description.sponsorshipIdFAPESP: 2007/52015-0
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.format.extent467-+
dc.identifier.citationProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications. Berlin: Springer-verlag Berlin, v. 6419, p. 467-+, 2010.
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/195975
dc.identifier.wosWOS:000290420500062
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest Classifier
dc.subjectOutlier Detection
dc.subjectSupervised Classification
dc.subjectLearning Algorithm
dc.titleImproving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasetsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.author.orcid0000-0002-9529-4253[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos