Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets
dc.contributor.author | Castelo-Fernandez, Cesar | |
dc.contributor.author | Rezende, Pedro J. de | |
dc.contributor.author | Falcao, Alexandre X. | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.author | Bloch, I | |
dc.contributor.author | Cesar, R. M. | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-10T19:00:04Z | |
dc.date.available | 2020-12-10T19:00:04Z | |
dc.date.issued | 2010-01-01 | |
dc.description.abstract | In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OFF while still gaining in classification time, at the expense of a slight increase in training time. | en |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil | |
dc.description.affiliation | Univ Sao Paulo, Dept Comp, UNESP, Bauru, Brazil | |
dc.description.affiliationUnesp | Univ Sao Paulo, Dept Comp, UNESP, Bauru, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | FAEPEX/Unicamp | |
dc.description.sponsorshipId | CAPES: 01-P-04388/2010 | |
dc.description.sponsorshipId | CNPq: 472504/2007-0 | |
dc.description.sponsorshipId | CNPq: 483177/2009-1 | |
dc.description.sponsorshipId | FAPESP: 07/52015-0 | |
dc.description.sponsorshipId | CNPq: 481556/2009-5 | |
dc.description.sponsorshipId | CNPq: 302617/2007-8 | |
dc.description.sponsorshipId | FAPESP: 2007/52015-0 | |
dc.description.sponsorshipId | FAPESP: 2009/16206-1 | |
dc.format.extent | 467-+ | |
dc.identifier.citation | Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications. Berlin: Springer-verlag Berlin, v. 6419, p. 467-+, 2010. | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11449/195975 | |
dc.identifier.wos | WOS:000290420500062 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications | |
dc.source | Web of Science | |
dc.subject | Optimum-Path Forest Classifier | |
dc.subject | Outlier Detection | |
dc.subject | Supervised Classification | |
dc.subject | Learning Algorithm | |
dc.title | Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
unesp.author.orcid | 0000-0002-9529-4253[2] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |