On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification

Carregando...
Imagem de Miniatura

Data

2016-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Tensor-based representations have been widely pursued in the last years due to the increasing number of high-dimensional datasets, which might be better described by the multilinear algebra. In this paper, we introduced a recent pattern recognition technique called Optimum-Path Forest (OPF) in the context of tensor-oriented applications, as well as we evaluated its robustness to space transformations using Multilinear Principal Component Analysis in both face and human action recognition tasks considering image and video datasets. We have shown OPF can obtain more accurate recognition rates in some situations when working on tensor-oriented feature spaces.

Descrição

Idioma

Inglês

Como citar

Artificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 117-125, 2016.

Itens relacionados

Financiadores

Coleções