A rank aggregation framework for video multimodal geocoding

dc.contributor.authorLi, Lin Tzy
dc.contributor.authorPedronette, Daniel Carlos Guimarães [UNESP]
dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorPenatti, Otávio A.B.
dc.contributor.authorCalumby, Rodrigo Tripodi
dc.contributor.authorTorres, Ricardo da Silva
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionCPqD Foundation
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Feira de Santana (UEFS)
dc.date.accessioned2014-05-27T11:30:05Z
dc.date.available2014-05-27T11:30:05Z
dc.date.issued2013-08-01
dc.description.abstractThis paper proposes a rank aggregation framework for video multimodal geocoding. Textual and visual descriptions associated with videos are used to define ranked lists. These ranked lists are later combined, and the resulting ranked list is used to define appropriate locations for videos. An architecture that implements the proposed framework is designed. In this architecture, there are specific modules for each modality (e.g, textual and visual) that can be developed and evolved independently. Another component is a data fusion module responsible for combining seamlessly the ranked lists defined for each modality. We have validated the proposed framework in the context of the MediaEval 2012 Placing Task, whose objective is to automatically assign geographical coordinates to videos. Obtained results show how our multimodal approach improves the geocoding results when compared to methods that rely on a single modality (either textual or visual descriptors). We also show that the proposed multimodal approach yields comparable results to the best submissions to the Placing Task in 2012 using no extra information besides the available development/training data. Another contribution of this work is related to the proposal of a new effectiveness evaluation measure. The proposed measure is based on distance scores that summarize how effective a designed/tested approach is, considering its overall result for a test dataset. © 2013 Springer Science+Business Media New York.en
dc.description.affiliationRECOD Lab, Institute of Computing University of Campinas (UNICAMP), Campinas, 13083-852
dc.description.affiliationTelecommunications Res. and Dev. Center CPqD Foundation, Campinas, 13086-902
dc.description.affiliationDepartment of Statistics, Applied Mathematics and Computing Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900
dc.description.affiliationDepartment of Exact Sciences University of Feira de Santana (UEFS), Feira de Santana, 44036-900
dc.description.affiliationUnespDepartment of Statistics, Applied Mathematics and Computing Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900
dc.format.extent1-37
dc.identifierhttp://dx.doi.org/10.1007/s11042-013-1588-4
dc.identifier.citationMultimedia Tools and Applications, p. 1-37.
dc.identifier.doi10.1007/s11042-013-1588-4
dc.identifier.issn1380-7501
dc.identifier.issn1573-7721
dc.identifier.scopus2-s2.0-84880660373
dc.identifier.urihttp://hdl.handle.net/11449/76113
dc.language.isoeng
dc.relation.ispartofMultimedia Tools and Applications
dc.relation.ispartofjcr1.541
dc.relation.ispartofsjr0,287
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectEffectiveness measure
dc.subjectMultimodal retrieval
dc.subjectRank aggregation
dc.subjectVideo geotagging
dc.titleA rank aggregation framework for video multimodal geocodingen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos