Interaction between wave and coastal structure: Validation of two lagrangian numerical models with experimental results marine 2011

dc.contributor.authorDidier, E.
dc.contributor.authorMartins, R.
dc.contributor.authorNeves, M. G.
dc.contributor.authorVasco, J. R G [UNESP]
dc.contributor.institutionNational Laboratory of Civil Engineering (LNEC)
dc.contributor.institutionNew University of Lisbon (FCT-UNL)
dc.contributor.institutionTechnical University of Lisbon
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.description.abstractNumerical modeling of the interaction among waves and coastal structures is a challenge due to the many nonlinear phenomena involved, such as, wave propagation, wave transformation with water depth, interaction among incident and reflected waves, run-up / run-down and wave overtopping. Numerical models based on Lagrangian formulation, like SPH (Smoothed Particle Hydrodynamics), allow simulating complex free surface flows. The validation of these numerical models is essential, but comparing numerical results with experimental data is not an easy task. In the present paper, two SPH numerical models, SPHysics LNEC and SPH UNESP, are validated comparing the numerical results of waves interacting with a vertical breakwater, with data obtained in physical model tests made in one of the LNEC's flume. To achieve this validation, the experimental set-up is determined to be compatible with the Characteristics of the numerical models. Therefore, the flume dimensions are exactly the same for numerical and physical model and incident wave characteristics are identical, which allows determining the accuracy of the numerical models, particularly regarding two complex phenomena: wave-breaking and impact loads on the breakwater. It is shown that partial renormalization, i.e. renormalization applied only for particles near the structure, seems to be a promising compromise and an original method that allows simultaneously propagating waves, without diffusion, and modeling accurately the pressure field near the structure.en
dc.description.affiliationNational Laboratory of Civil Engineering (LNEC), Av. do Brasil, 101, 1700-066, Lisboa
dc.description.affiliationFaculty of Science and Technology New University of Lisbon (FCT-UNL), Monte de Caparica, 2829-516
dc.description.affiliationMARETEC - IST Technical University of Lisbon, Av. Rovisco, Pais, 1049-001
dc.description.affiliationUniversidade Estadual Paulista (UNESP), Av. Brasil, 56, 15385-000, Ilha Solteira, São Paulo
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP), Av. Brasil, 56, 15385-000, Ilha Solteira, São Paulo
dc.identifier.citationMARINE 2011 - Computational Methods in Marine Engineering IV, p. 134-145.
dc.relation.ispartofMARINE 2011 - Computational Methods in Marine Engineering IV
dc.rights.accessRightsAcesso aberto
dc.subjectImpact loads
dc.subjectSph - Smoothed Particle Hydrodynamics
dc.subjectVertical breakwater
dc.subjectWave-structure interaction
dc.subjectCoastal structures
dc.subjectExperimental data
dc.subjectExperimental setup
dc.subjectFree-surface flow
dc.subjectIncident waves
dc.subjectLagrangian formulations
dc.subjectNon-linear phenomena
dc.subjectNumerical modeling
dc.subjectNumerical results
dc.subjectPhysical model
dc.subjectPhysical model test
dc.subjectPressure field
dc.subjectReflected waves
dc.subjectSmoothed particle hydrodynamics
dc.subjectWater depth
dc.subjectWave overtoppings
dc.subjectWave transformations
dc.subjectComputational methods
dc.subjectComputer simulation
dc.subjectLagrange multipliers
dc.subjectMarine engineering
dc.subjectNumerical models
dc.subjectUnderwater foundations
dc.subjectWave transmission
dc.subjectCoastal engineering
dc.titleInteraction between wave and coastal structure: Validation of two lagrangian numerical models with experimental results marine 2011en
dc.typeTrabalho apresentado em evento


Pacote Original
Agora exibindo 1 - 1 de 1
Imagem de Miniatura
595.82 KB
Adobe Portable Document Format