Polinômios ortogonais e L-ortogonais associados a medidas relacionadas

Carregando...
Imagem de Miniatura

Data

2011-01-20

Orientador

Andrade, Eliana Xavier Linhares de

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb´em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados.

Resumo (inglês)

The main purpose of this work is to study some properties of two sequences of polynomials, {Pϕ0 n }∞ n=0 and {Pϕ1 n }∞ n=0, orthogonal, respectively, with respect to the related measures dϕ0 and dϕ1, and properties of two sequences of L-orthogonal polynomials, {Bψ0 n }∞ n=0 and {Bψ1 n }∞ n=0, when the associated measures, dψ0 and dψ1, are also related. For the orthogonal polynomials, we considered two cases: orthogonal polynomials associated with symmetric measures related to each other by dϕ1(x) = c 1 + qx2 dϕ0(x) and orthogonal polynomials associated with measures related by (x − q) dϕ1(x) = c dϕ0(x). As examples, the results are applied to obtain informations regarding Sobolev orthogonal polynomials associated with symmetric measures as Gegenbauer and Hermite measures, and non-symmetrical measures such as Jacobi and Laguerre measures. For the L-orthogonal polynomials, we considered the study of two sequences of polynomials associated with strong positive measures dψ0 and dψ1 and related to each other by (z −κ) dψ1(z) = c dψ0(z). As a consequence of these properties, algorithms to generate any pair of coefficients of the recurrence relations, {αψ0 n , βψ0 n } or {αψ1 n , βψ1 n }, given the other, were given.

Descrição

Idioma

Português

Como citar

CAMPETTI, Marcos Henrique. Polinômios ortogonais e L-ortogonais associados a medidas relacionadas. 2011. 115 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2011.

Itens relacionados