Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks

dc.contributor.authorRavindran, Prabu
dc.contributor.authorCosta, Adriana
dc.contributor.authorSoares, Richard
dc.contributor.authorWiedenhoeft, Alex C.
dc.contributor.institutionUniv Wisconsin
dc.contributor.institutionUSDA Forest Serv
dc.contributor.institutionPurdue Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T15:47:46Z
dc.date.available2018-11-26T15:47:46Z
dc.date.issued2018-03-23
dc.description.abstractBackground: The current state-of-the-art for field wood identification to combat illegal logging relies on experienced practitioners using hand lenses, specialized identification keys, atlases of woods, and field manuals. Accumulation of this expertise is time-consuming and access to training is relatively rare compared to the international demand for field wood identification. A reliable, consistent and cost effective field screening method is necessary for effective global scale enforcement of international treaties such as the Convention on the International Trade in Endagered Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports. Results: We present highly effective computer vision classification models, based on deep convolutional neural networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, including CITES-listed Swietenia macrophylla, Swietenia mahagoni, Cedrela fissilis, and Cedrela odorata. We build and evaluate models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 to 97.5%, with the strongest performance by the genus-level model. Misclassified images are attributed to classes consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of traditional wood identification. Conclusion: The end-to-end trained image classifiers that we present discriminate the woods based on digital images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and captured in the field. Hence this work represents a strong proof-of-concept for using computer vision and convolutional neural networks to develop practical models for field screening timber and wood products to combat illegal logging.en
dc.description.affiliationUniv Wisconsin, Dept Bot, Madison, WI 53706 USA
dc.description.affiliationUSDA Forest Serv, Forest Prod Lab, Ctr Wood Anat Res, Madison, WI 53726 USA
dc.description.affiliationPurdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
dc.description.affiliationUniv Estadual Paulista, Ciencias Biol Bot, Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Ciencias Biol Bot, Botucatu, SP, Brazil
dc.description.sponsorshipUS Department of State
dc.description.sponsorshipIdUS Department of State: 19318814Y0010
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.1186/s13007-018-0292-9
dc.identifier.citationPlant Methods. London: Biomed Central Ltd, v. 14, 10 p., 2018.
dc.identifier.doi10.1186/s13007-018-0292-9
dc.identifier.fileWOS000428550400001.pdf
dc.identifier.issn1746-4811
dc.identifier.urihttp://hdl.handle.net/11449/160181
dc.identifier.wosWOS:000428550400001
dc.language.isoeng
dc.publisherBiomed Central Ltd
dc.relation.ispartofPlant Methods
dc.relation.ispartofsjr1,885
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectWood identification
dc.subjectIllegal logging
dc.subjectCITES
dc.subjectForensic wood anatomy
dc.subjectDeep learning
dc.subjectTransfer learning
dc.subjectConvolutional neural networks
dc.titleClassification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networksen
dc.typeArtigo
dcterms.rightsHolderBiomed Central Ltd
dspace.entity.typePublication

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000428550400001.pdf
Tamanho:
1.25 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções