Publicação: Investigação da difusão caótica em mapeamentos Hamiltonianos
Carregando...
Arquivos
Data
Autores
Orientador
Leonel, Edson Denis 

Coorientador
Pós-graduação
Física - IGCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Neste trabalho apresentaremos e discutiremos algumas propriedades dinâmicas para uma família de mapeamentos discretos que preservam a área no espaço de fases nas variáveis momentum, I, e coordenada generalizada, θ. O mapeamento é descrito por dois parâmetros de controle, sendo eles ε, ajustando a intensidade da não linearidade, e γ, um parâmetro que fornece a forma da divergência da variável “θ”no limite em que I → 0. O parâmetro ε controla a transição de integrabilidade, quando ε = 0, para não integrabilidade, no limite em que ε ≠ 0. O objetivo principal deste trabalho é descrever o comportamento das curvas do momentum médio, I_RMS(ε,n), em função de n, a partir de uma função de probabilidade, P(I(n)), de observar um determinado momentum I em um instante n. Para tanto, resolveremos a Equação da Difusão analiticamente, considerando os casos: (i) o momentum inicial nulo, I_0 = 0, e (ii) o momentum inicial não nulo, I_0 ≠ 0. Nossos resultados descrevem bem os resultados fenomenológicos conhecidos na literatura (Physics Letters A, 379: 1808 (2015)).
Resumo (inglês)
In this work we will present and discuss some dynamical properties of a family of mappings that preserves area in the phase space for two variables momentum, I, and generalized coordinate, θ. The mapping is controled by two parameters: ε, tunning the intensity of nonlinearity, and γ, that describes the form of divergence of θ when I → 0. The parameter ε defines a transition from integrability, when ε = 0, to nonintegrability, when ε ≠ 0. The main goal of this work is to describe the curves of average momentum, I_RMS(ε,n), in terms of n, from a probability function, P(I(n)), to observe a determined momentum I at an instant n. Therefore, we will solve the Diffusion equation analitically considering the cases: (i) the initial momentum is null, I_0 = 0, and (ii) the initial momentum is nonzero, I_0 ≠ 0. Our results describe well the known phenomenological results in literature (Physics Letters A, 379: 1808 (2015)).
Descrição
Palavras-chave
Equação da difusão, Sistema Hamiltoniano, Lei de escala, Diffusion equation, Hamiltonian system, Scaling law
Idioma
Português