Logo do repositório

ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SUGARCANE STALK AND TOTAL BIOMASS YIELD BASED ON MICRONUTRIENT RATES APPLIED IN THE PLANTING FURROW AND TO THE LEAVES

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Associação Brasileira de Engenharia Agrícola

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Sugarcane is pivotal in the global bioeconomy, providing a renewable resource for products such as ethanol, sugar, bioenergy, animal feed, and bioplastics. Its versatility makes it an essential crop for industries seeking sustainable alternatives to fossil fuels. This study presents an advanced approach that uses artificial neural networks (ANNs), specifically a multilayer perceptron model, to accurately estimate sugarcane productivity and biomass. The model incorporates the effects of micronutrient applications, both in the planting furrow and on the leaves, effectively capturing the complex interactions that influence crop yield. During training, the ANN demonstrated high precision, achieving a mean squared error (MSE) of 0.000097 and an R2 of 0.98, closely aligning the predicted outputs with experimental results. In the validation phase, using previously unseen data, it maintained strong performance, with an MSE of 0.0008796. This performance supports the model's ability to generalize beyond the training set, reliably estimating sugarcane yield and biomass under varying conditions. These findings highlight the potential of ANN-based approaches to enhance agricultural management, offering a robust tool to optimize crop performance and improve resource allocation in real-world farming scenarios.

Descrição

Palavras-chave

artificial intelligence, predicting, fertilization, micronutrients, sugarcane

Idioma

Inglês

Citação

Engenharia Agrícola. Associação Brasileira de Engenharia Agrícola, v. 45, n. spe1, p. -, 2025.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências Agrárias e Tecnológicas
FCAT
Campus: Dracena


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso