Logo do repositório

ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SUGARCANE STALK AND TOTAL BIOMASS YIELD BASED ON MICRONUTRIENT RATES APPLIED IN THE PLANTING FURROW AND TO THE LEAVES

dc.contributor.authorBonini, Alfredo [UNESP]
dc.contributor.authorLira, Maikon V. Da Silva [UNESP]
dc.contributor.authorMeirelles, Guilherme C. [UNESP]
dc.contributor.authorSantos, Luiz F. De M. [UNESP]
dc.contributor.authorBonini, Carolina Dos S. B. [UNESP]
dc.contributor.authorHeinrichs, Reges [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:42:41Z
dc.date.issued2025-04-14
dc.description.abstractSugarcane is pivotal in the global bioeconomy, providing a renewable resource for products such as ethanol, sugar, bioenergy, animal feed, and bioplastics. Its versatility makes it an essential crop for industries seeking sustainable alternatives to fossil fuels. This study presents an advanced approach that uses artificial neural networks (ANNs), specifically a multilayer perceptron model, to accurately estimate sugarcane productivity and biomass. The model incorporates the effects of micronutrient applications, both in the planting furrow and on the leaves, effectively capturing the complex interactions that influence crop yield. During training, the ANN demonstrated high precision, achieving a mean squared error (MSE) of 0.000097 and an R2 of 0.98, closely aligning the predicted outputs with experimental results. In the validation phase, using previously unseen data, it maintained strong performance, with an MSE of 0.0008796. This performance supports the model's ability to generalize beyond the training set, reliably estimating sugarcane yield and biomass under varying conditions. These findings highlight the potential of ANN-based approaches to enhance agricultural management, offering a robust tool to optimize crop performance and improve resource allocation in real-world farming scenarios.en
dc.description.affiliationUNESP, School of Sciences and Engineering
dc.description.affiliationUNESP, College of Agricultural and Technological Sciences
dc.description.affiliationUnespUNESP, School of Sciences and Engineering
dc.description.affiliationUnespUNESP, College of Agricultural and Technological Sciences
dc.format.extent-
dc.identifierhttp://dx.doi.org/10.1590/1809-4430-Eng.Agric.v45nespe120240176/2025
dc.identifier.citationEngenharia Agrícola. Associação Brasileira de Engenharia Agrícola, v. 45, n. spe1, p. -, 2025.
dc.identifier.doi10.1590/1809-4430-Eng.Agric.v45nespe120240176/2025
dc.identifier.fileS0100-69162025001000301.pdf
dc.identifier.issn0100-6916
dc.identifier.issn1809-4430
dc.identifier.scieloS0100-69162025001000301
dc.identifier.urihttps://hdl.handle.net/11449/299533
dc.language.isoeng
dc.publisherAssociação Brasileira de Engenharia Agrícola
dc.relation.ispartofEngenharia Agrícola
dc.rights.accessRightsAcesso abertopt
dc.sourceSciELO
dc.subjectartificial intelligenceen
dc.subjectpredictingen
dc.subjectfertilizationen
dc.subjectmicronutrientsen
dc.subjectsugarcaneen
dc.titleARTIFICIAL NEURAL NETWORKS FOR PREDICTING SUGARCANE STALK AND TOTAL BIOMASS YIELD BASED ON MICRONUTRIENT RATES APPLIED IN THE PLANTING FURROW AND TO THE LEAVESen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication645fc506-d696-4eff-bf29-45e82e484198
relation.isOrgUnitOfPublication.latestForDiscovery645fc506-d696-4eff-bf29-45e82e484198
unesp.author.orcid0000-0002-0250-489X[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Tupãpt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas, Dracenapt

Arquivos