Bioconversion of rice straw by Lentinula edodes under different spawn formulations
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
To attend to the growing world demand for mushrooms, it is interesting to increase the system’s productivity, improve quality and reduce production costs. This study aimed to optimize the production and quality of fruiting bodies of the edible and medicinal mushroom Lentinula edodes (shiitake), in agroresidues substrate using appropriate strain and spawn formulation. The evaluation was conducted using two strains under seven different spawn formulations (Control [C]: Sorghum grain + 2.5% CaCO3; (2) C + 2.5% sawdust; (T3) C + 5% sawdust; (T4) C + 2.5% peat; (T5) C + 5% peat; (T6) C + 1.25% sawdust + 1.25% peat; (T7) C + 2.5% sawdust + 2.5% peat) that were inoculated into the blocks at a proportion of 2% (w/w). The substrate was formulated with 63% rice straw, 20% sawdust, 15% wheat bran, and 2% CaCO3 and sterilized. The incubation period was 87 days. Two flushes were obtained. Adding small aliquots of peat and sawdust to the inoculum gave significantly higher morphological results than the control in all variables analyzed. The days required for the first harvest ranged from 87 to 94 days. The average weight of basidiomes ranged from 6.38 to 28.75 g. The productivity data show superior results for the treatments in which the spawn was supplemented with sawdust and peat. Enhanced bioconversion with supplemented spawn shows promises for yield and composition improvement, crucial for commercial viability. It can be concluded that shiitake production using agroresidues such as straw can be increased using a suitable strain/spawn for optimal production.
Descrição
Palavras-chave
Agroresidues, Axenic rice straw, Edible mushrooms, Strain selection, Supplemented spawn
Idioma
Inglês
Citação
Brazilian Journal of Microbiology, v. 54, n. 4, p. 3137-3146, 2023.





