Synergistic Antibacterial Efficacy of Melittin in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA)
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high mortality rates. Antimicrobial peptides are a source of molecules for developing antimicrobials; one such peptide is melittin, a fraction from the venom of the Apis mellifera bee. This study aimed to evaluate the antibacterial and antibiofilm activities of melittin and its association with oxacillin (mel+oxa) against MRSA isolates, and to investigate the mechanisms of action of the treatments on MRSA. Minimum inhibitory concentrations (MICs) were determined, and synergistic effects of melittin with oxacillin and cephalothin were assessed. Antibiofilm and cytotoxic activities, as well as their impact on the cell membrane, were evaluated for melittin, oxacillin, and mel+oxa. Proteomics evaluated the effects of the treatments on MRSA. Melittin mean MICs for MRSA was 4.7 μg/mL and 12 μg/mL for oxacillin. Mel+oxa exhibited synergistic effects, reducing biofilm formation, and causing leakage of proteins, nucleic acids, potassium, and phosphate ions, indicating action on cell membrane. Melittin and mel+oxa, at MIC values, did not induce hemolysis and apoptosis in HaCaT cells. The treatments resulted in differential expression of proteins associated with protein synthesis and energy metabolism. Mel+oxa demonstrated antibacterial activity against MRSA, suggesting a potential as a candidate for the development of new antibacterial agents against MRSA.
Descrição
Palavras-chave
antibiofilm activity, antibiotic resistance, antimicrobial peptides, biofilm, proteomics, synergism
Idioma
Inglês
Citação
Microorganisms, v. 11, n. 12, 2023.




