Logotipo do repositório
 

Publicação:
Preliminary diagnosis of ophtalmological diseases through machine learning techniques

Carregando...
Imagem de Miniatura

Data

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Although one can find several patents addressing surgery procedures to tackle ophthalmological diseases, it is very unusual to find other ones that apply machine learning techniques to automatically identify them. In this paper we addressed the problem of ophthalmological disease identification as a first step of an expert diagnosis system using five state-of-the-art supervised pattern recognition techniques: Optimum-Path Forest, Support Vector Machines, Artificial Neural Networks using Multilayer Perceptrons, Self Organizing Maps and a Bayesian classifier. Two rounds of experiments were accomplished in order to assess the performance of the classifiers with fixed and varied training set size percentages. The results indicated that Support Vector Machines and Self Organizing Maps were the most accurate classifiers, and OPF the fastest one considering the overall execution time.

Descrição

Palavras-chave

Machine learning, Supervised classification, Ophthalmological diseases

Idioma

Inglês

Como citar

Recent Patents on Signal Processing, v. 1, n. 1, p. 74-79, 2011.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação