Publicação: Preliminary diagnosis of ophtalmological diseases through machine learning techniques
dc.contributor.author | Pagnin, André Franco | |
dc.contributor.author | Schellini, Silvana Artioli [UNESP] | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2016-03-02T12:58:16Z | |
dc.date.available | 2016-03-02T12:58:16Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Although one can find several patents addressing surgery procedures to tackle ophthalmological diseases, it is very unusual to find other ones that apply machine learning techniques to automatically identify them. In this paper we addressed the problem of ophthalmological disease identification as a first step of an expert diagnosis system using five state-of-the-art supervised pattern recognition techniques: Optimum-Path Forest, Support Vector Machines, Artificial Neural Networks using Multilayer Perceptrons, Self Organizing Maps and a Bayesian classifier. Two rounds of experiments were accomplished in order to assess the performance of the classifiers with fixed and varied training set size percentages. The results indicated that Support Vector Machines and Self Organizing Maps were the most accurate classifiers, and OPF the fastest one considering the overall execution time. | en |
dc.description.affiliationUnesp | Universidade Estadual Paulista, Departamento de Computação, Faculdade de Ciências de Bauru | |
dc.description.affiliationUnesp | Universidade Estadual Paulista, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Faculdade de Medicina de Botucatu | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2009/16206-1 | |
dc.format.extent | 74-79 | |
dc.identifier | http://dx.doi.org/10.2174/2210686311101010074 | |
dc.identifier.citation | Recent Patents on Signal Processing, v. 1, n. 1, p. 74-79, 2011. | |
dc.identifier.doi | 10.2174/2210686311101010074 | |
dc.identifier.issn | 1877-6124 | |
dc.identifier.lattes | 9420249100835492 | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.lattes | 4224246555625985 | |
dc.identifier.uri | http://hdl.handle.net/11449/134759 | |
dc.language.iso | eng | |
dc.relation.ispartof | Recent Patents on Signal Processing | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Currículo Lattes | |
dc.subject | Machine learning | en |
dc.subject | Supervised classification | en |
dc.subject | Ophthalmological diseases | en |
dc.title | Preliminary diagnosis of ophtalmological diseases through machine learning techniques | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 9420249100835492 | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.lattes | 4224246555625985 | |
unesp.author.orcid | 0000-0002-6494-7514[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu | pt |
unesp.department | Computação - FC | pt |
unesp.department | Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço - FMB | pt |