Publicação: SMS Spam Detection Through Skip-gram Embeddings and Shallow Networks
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
The drastic decrease in mobile SMS costs turned phone users more prone to spam messages, usually with unwanted marketing or questionable content. As such, researchers have proposed different methods for detecting SMS spam messages. This paper presents a technique for embedding SMS messages into vector spaces that is suitable for spam detection. The proposed approach relies on mining patterns that are relevant for distinguishing spam from legitimate messages. A subset of those patterns is used to construct a function that maps text messages into a multidimensional vector space. The extracted patterns are represented as skip-grams of token attributes, where a skip-gram can be seen as a generalization of the n-gram model that allows a distance greater than one between matched tokens in the text. We evaluate the proposed approach using the generated vectors for spam classification on the UCI Spam Collection dataset. The experiments showed that our method combined with shallow networks reached accuracy that is competitive with state-of-the-art approaches.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, p. 4193-4201.