Logo do repositório
 

SMS Spam Detection Through Skip-gram Embeddings and Shallow Networks

dc.contributor.authorde Sousa, Gustavo José [UNESP]
dc.contributor.authorPedronette, Daniel Carlos Guimarães [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorGuilherme, Ivan Rizzo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T13:41:25Z
dc.date.available2022-05-01T13:41:25Z
dc.date.issued2021-01-01
dc.description.abstractThe drastic decrease in mobile SMS costs turned phone users more prone to spam messages, usually with unwanted marketing or questionable content. As such, researchers have proposed different methods for detecting SMS spam messages. This paper presents a technique for embedding SMS messages into vector spaces that is suitable for spam detection. The proposed approach relies on mining patterns that are relevant for distinguishing spam from legitimate messages. A subset of those patterns is used to construct a function that maps text messages into a multidimensional vector space. The extracted patterns are represented as skip-grams of token attributes, where a skip-gram can be seen as a generalization of the n-gram model that allows a distance greater than one between matched tokens in the text. We evaluate the proposed approach using the generated vectors for spam classification on the UCI Spam Collection dataset. The experiments showed that our method combined with shallow networks reached accuracy that is competitive with state-of-the-art approaches.en
dc.description.affiliationSão Paulo State University - UNESP
dc.description.affiliationUnespSão Paulo State University - UNESP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 309439/2020-5
dc.format.extent4193-4201
dc.identifier.citationFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021, p. 4193-4201.
dc.identifier.scopus2-s2.0-85123915540
dc.identifier.urihttp://hdl.handle.net/11449/234090
dc.language.isoeng
dc.relation.ispartofFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021
dc.sourceScopus
dc.titleSMS Spam Detection Through Skip-gram Embeddings and Shallow Networksen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentComputação - FCEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos