Logo do repositório

Artificial intelligence applied to estimate soybean yield

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.

Descrição

Palavras-chave

Artificial Neural Network, Forecast, Intelligent systems, Mathematical modelling, Soy

Idioma

Inglês

Citação

Brazilian Journal of Biosystems Engineering, v. 18.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências Agrárias e Tecnológicas
FCAT
Campus: Dracena


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso