Logo do repositório

Artificial intelligence applied to estimate soybean yield

dc.contributor.authorDos Santos, Wesley Prado L. [UNESP]
dc.contributor.authorSilva, Mariana Bonini [UNESP]
dc.contributor.authorBonini Neto, Alfredo [UNESP]
dc.contributor.authorBonini, Carolina S. B. [UNESP]
dc.contributor.authorMoreira, Adônis
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.date.accessioned2025-04-29T18:57:33Z
dc.date.issued2024-02-20
dc.description.abstractThe application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.en
dc.description.affiliationSão Paulo State University (UNESP) School of Sciences and Engineering, São Paulo State
dc.description.affiliationSão Paulo State University (UNESP) College of Agricultural and Technological Sciences, São Paulo State
dc.description.affiliationDepartment of Soil Science Embrapa Soja, Paraná State
dc.description.affiliationUnespSão Paulo State University (UNESP) School of Sciences and Engineering, São Paulo State
dc.description.affiliationUnespSão Paulo State University (UNESP) College of Agricultural and Technological Sciences, São Paulo State
dc.identifierhttp://dx.doi.org/10.18011/bioeng.2024.v18.1211
dc.identifier.citationBrazilian Journal of Biosystems Engineering, v. 18.
dc.identifier.doi10.18011/bioeng.2024.v18.1211
dc.identifier.issn2359-6724
dc.identifier.issn1981-7061
dc.identifier.scopus2-s2.0-85199299651
dc.identifier.urihttps://hdl.handle.net/11449/301228
dc.language.isoeng
dc.relation.ispartofBrazilian Journal of Biosystems Engineering
dc.sourceScopus
dc.subjectArtificial Neural Network
dc.subjectForecast
dc.subjectIntelligent systems
dc.subjectMathematical modelling
dc.subjectSoy
dc.titleArtificial intelligence applied to estimate soybean yielden
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication645fc506-d696-4eff-bf29-45e82e484198
relation.isOrgUnitOfPublication.latestForDiscovery645fc506-d696-4eff-bf29-45e82e484198
unesp.author.orcid0000-0002-0250-489X[3]
unesp.author.orcid0000-0003-4023-5990[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Tupãpt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas, Dracenapt

Arquivos