Logotipo do repositório
 

Publicação:
Nonlocal Markovian models for image denoising

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Is&t & Spie

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Currently, the state-of-the art methods for image denoising are patch-based approaches. Redundant information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy functions, the pairwise pixel interaction is weighted according to the similarities between the patches corresponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (beta) for these models is presented here. For evaluating this proposal, these models are used as an a priori model in a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs. (C) 2016 SPIE and IS&T

Descrição

Palavras-chave

image denoising, maximum pseudolikelihood estimation, Markov random fields, nonlocal patch-based approach, parameter estimation

Idioma

Inglês

Como citar

Journal Of Electronic Imaging. Bellingham: Is&t & Spie, v. 25, n. 1, 20 p., 2016.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação