Publicação: Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
The huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases.
Descrição
Palavras-chave
Anomaly Detection, Clustering, Unsupervised Manifold Learning, Video Surveillance
Idioma
Inglês
Como citar
VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 404-412.