Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins

Nenhuma Miniatura disponível

Data

2019-02-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Objective: The aim of this study was to evaluate the antibacterial activity of a composite resin modified by TiO2 and TiO2/Ag nanoparticles and their influence over different properties. Methods: TiO2 and TiO2/Ag NPs were synthesized by polymeric precursor and microwave-assisted hydrothermal methods and then, characterized by different techniques. Direct contact test was performed using Filtek™ Z350XT blended with 0.5; 1 and 2% (wt.) of NPs against Streptococcus mutans to determine the best concentration to the other tests. After that, the modified composite resin was tested against S. mutans 7-day biofilm (CFU/mL). Also, compressive and diametral tensile strength (n = 40), degree of conversion (n = 25) and surface roughness (n = 50) was performed. The data were analyzed by ANOVA and Tukey's test for multiple comparison at 5% significance level. Results: The direct contact test demonstrates that by increasing the nanoparticle content, the bacterial growth is significantly reduceed (p < 0.05). The inclusion of 2% of TiO2/Ag NPs significantly decreased (p < 0.05) the biofilm accumulation of S. mutans on the composite resin surface compared to the control Group. The TiO2 NPs treated with an organosilane increased compressive strength of composite resin (p < 0.05). Degree of conversion remained unchanged (p > 0.05) and the surface roughness increased with the NPs (p < 0.05), except for the TiO2 by polymeric precursor Group (p > 0.05). Significance: The development of an antibacterial dental restorative material that hinder S. mutans biofilm without sacrificing the mechanical and physical properties is desirable in dental material science.

Descrição

Idioma

Inglês

Como citar

Dental Materials, v. 35, n. 2, p. e36-e46, 2019.

Itens relacionados