Publicação: Grupos de Gottlieb de espaços de Moore
Carregando...
Arquivos
Data
Autores
Orientador
Melo, Thiago de 

Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Em [3], após terminar a classificação Gn(M(A, n)) para n > 2 e A um grupo abeliano finitamente gerado, os autores fazem o seguinte comentário: [3, Remark 4.5]: “Seria interessante calcular outros grupos de Gottlieb de espaços de Moore como, por exemplo, Gn+1(M(A, n))”. Fomos então motivados por esse comentário e também por cálculos de Gn+k(M(Z ⊕ A, n)), k = 1, 2, 3, 4, 5 para A grupo abeliano finito de ordem ímpar, feitos em [8, Chapter 3], para calcular os grupos de Gottlieb Gn+k(M(Z t ⊕ Z2)) para k = 1, 2 e t ≥ 1, e consequentemente, calcular os grupos de Gottlieb Gn+k(M(Z t ⊕ A)) para k = 1, 2, t ≥ 1 e A um grupo abeliano finito com |A| ≡ 2 (mod 4). Além do mais, também motivados por [3, Corollary 3.6], derivado de [3, Theorem 3.4], que diz: GN(S m ∨ S n ) = 0 com 2 ≤ m ≤ n e N < 2m − 1, estendemos o resultado para uma quantidade arbitrária de esferas podendo infinitas delas ser S 1 . Estes resultados estão disponíveis também no trabalho em conjunto [7].
Resumo (inglês)
In [3], after finishing the classification Gn(M(A, n)) for n > 2 and A a finitely generated abelian group, the authors make the following comment: [3, Remark 4.5]: “It would be interesting to compute other Gottlieb groups of Moore spaces like, for example, Gn+1(M(A, n))”. We were then motivated by this comment and also by computations of Gn+k(M(Z ⊕ A, n)), k = 1, 2, 3, 4, 5 for A finite oddorder abelian group, made in [8, Chapter 3], to calculate the Gottlieb groups Gn+k(M(Z t ⊕ Z2)) for k = 1, 2 and t ≥ 1, and consequently calculate the Gottlieb groups Gn+k(M(Z t ⊕ A)) for k = 1, 2, t ≥ 1 and A a finite abelian group with |A| ≡ 2 (mod 4). In addition, also motivated by [3, Corollary 3.6], derived from [3, Theorem 3.4], which says: GN(S m ∨ S n ) = 0 with 2 ≤ m ≤ n and N < 2m − 1, we extend the result to an arbitrary amount of spheres, infinite of which can be S 1 . These results are also available in the joint work [7].
Descrição
Palavras-chave
Topologia algébrica, Teoria de homotopia, Grupos de Gottlieb, Espaços de Moore, Algebraic topology, Homotopy theory, Gottlieb groups, Moore spaces
Idioma
Português