Topliss method in the optimization of salicylic acid derivatives as potential antimycobacterial agents
Nenhuma Miniatura disponível
Data
2008-02-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Blackwell Publishing
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
The Topliss method was used to guide a synthetic path in support of drug discovery efforts toward the identification of potent antimycobacterial agents. Salicylic acid and its derivatives, p-chloro, p-methoxy, and m-chlorosalicylic acid, exemplify a series of synthetic compounds whose minimum inhibitory concentrations for a strain of Mycobacterium were determined and compared to those of the reference drug, p-aminosalicylic acid. Several physicochemical descriptors (including Hammett's sigma constant, ionization constant, dipole moment, Hansch constant, calculated partition coefficient, Sterimol-L and -B-4 and molecular volume) were considered to elucidate structure-activity relationships. Molecular electrostatic potential and molecular dipole moment maps were also calculated using the AM1 semi-empirical method. Among the new derivatives, m-chlorosalicylic acid showed the lowest minimum inhibitory concentration. The overall results suggest that both physicochemical properties and electronic features may influence the biological activity of this series of antimycobacterial agents and thus should be considered in designing new p-aminosalicylic acid analogs.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Chemical Biology & Drug Design. Oxford: Blackwell Publishing, v. 71, n. 2, p. 167-172, 2008.